
Precision Redefined: Unlocking and Delivering the
Full Power of Modern GPUs for Scientific Computing
Harun Bayraktar, Senior Director – Math Libraries Engineering (presenter)

 & a long list of colleagues who contributed to this work

Fast and Accurate Numerical Linear Algebra on Low-Precision Hardware: Algorithms
and Error Analysis
PASC25 | June 19th, 2025 | Brugg, Switzerland

• Motivation, History, and Productization Status

• Device Extension Libraries & Emulation Samples on Github

• FP64 Matrix Multiplication Emulation in cuBLAS

• Automatically Determining Emulation Parameters:
Exponent Span Capacity (ESC) Algorithm

• Grading the cuBLAS DGEMM Implementation

• Closing Remarks & Future Work

Agenda

Evolution of Peak Performance
Leveraging High Performance and Energy-Efficient Hardware for Higher Precision

• Architectures will have to accommodate
both AI and scientific computing even as
the fields become increasingly
intertwined1

• Can we leverage reduced precision tensor
cores to:

• Accelerated mixed-precision algorithms?
• Emulate FP64 and FP32 matrix multiplies

without sacrificing accuracy for a
performance gain?

• Can we realize the higher perf/Watt
gain for a wide range of applications?

• Can we do this in a non-intrusive way
(i.e., not require any code changes)?

1 Hardware Trends Impacting Floating-Point Computations In Scientific Applications https://arxiv.org/abs/2411.12090

https://arxiv.org/abs/2411.12090

Historical Perspective on Emulation
The evolution of floating-point (FP) computation

Simulated floating-point
arithmetic utilizing
fixed-point
representations
IBM 701 Speedcoding
System

1950s

IBM Hexadecimal FP
Cray FP
Diversity in
representations

1960s-70s
IEEE 754
Standardization of FP

1985

FPU Coprocessor
Intel 8087

1980
Integrated FPU
Intel i486

1989
GPU Tensor Cores
introduced for for reduced
& mixed-precision
FP16, BF16, TF32, FP8,
NVFP4, MXFP8

2017+

FP emulation returns
(e.g., Ozaki-I & II)
GPU Tensor Cores
Accelerated Matrix
Multiplication using AI FP
types

Today
GPUs with
programmable shaders
NVIDIA GeForce3

2001

Emulation Methods for Matrix Multiplication

• FP32 using BF16 Tensor Cores 1

• Tested for accuracy and performance impact in:
• Weather, quantum circuit and condensed matter simulations

• Dense Linear Algebra (QR, LU)
• Uses 9 inner matrix multiplies in BF16 (BF16x9)
• Released with CUDA 12.9 for Blackwell GPUs

• FP64 using INT8 Tensor Cores 2

• Coming soon for Ampere, Ada, Hopper, and Blackwell GPUs
• Being tested for accuracy and performance impact in:

§ Materials Science, Electronic Structure

§ Molecular Dynamics, Computational Chemistry
§ HPL, Dense Linear Algebra (QR, LU)

§ Uses a variable number of inner matrix multiplies in INT8

1 https://arxiv.org/pdf/2203.03341 and https://arxiv.org/pdf/1904.06376
2 https://arxiv.org/abs/2306.11975 and https://arxiv.org/abs/2409.13313
See GTC Session Energy-Efficient Supercomputing Through Tensor Core-Accelerated Mixed-Precision Computing and Floating-Point Emulation [S71487]

https://arxiv.org/pdf/2203.03341
https://arxiv.org/pdf/1904.06376
https://arxiv.org/pdf/1904.06376
https://arxiv.org/pdf/1904.06376
https://arxiv.org/abs/2306.11975
https://arxiv.org/abs/2409.13313
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC

Productization of Emulation for Matrix Multiplications
Single- and Double-Precision Matrix Multiplications

• Initial release with cuBLAS as an opt-in
• If you opt-in it will also apply to libraries that depend

on cuBLAS where applicable
• Environment variables and new APIs allow full control

of emulation parameters
• CUBLAS_EMULATE_SINGLE_PRECISION=1|0

• cublasEmulationStrategy_t

• Safeguards are in place to fallback to native HW-
based kernels to guarantee results are always correct
and corner cases are handled

• Single-precision (FP32)
• Publicly released with CUDA 12.9 May 2025

• Double-precision (FP64)
• First with Ozaki-I method
• Release planned for second half of 2025

• Future releases will
• Add opt-in through other libraries
• After enough exposure will switch to opt-out

1. Direct Sparse Solvers will mostly benefit on non-100 class GPUs.
2. Initial emulation support in cuTENSOR will initially accelerate very large contractions on Blackwell and newer GPU architectures.

Energy-Efficient Supercomputing Through Tensor Core-Accelerated
Mixed-Precision Computing and Floating-Point Emulation [S71487]

https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC
https://register.nvidia.com/flow/nvidia/gtcs25/ap/page/catalog/session/1725987549624001IMZC

Device Extension Libraries & Emulation
Bringing advanced MathDx capabilities to ease writing high-
performance emulation kernels in C++ and Python

Breaking Down the Compute Stack
Example using an application that relies on a sparse direct solver

Compiler Stack

Kernel Authoring

Device Libraries

Domain-Specific Libraries

SDKs

Frameworks & Applications

Host Runtimes & Tools

Accelerated Libraries

Communication Libraries

PTX

NVVM / LLVM

CUDA C++

cuBLASDx CuTe

cuBLAS

cuDSS

Application

CUDA Kernel

D
evelopm

ent

Leverage D
evice

Libraries to accelerate

developm
ent and

create fused kernels

Use host APIs of

libraries to leverage

optim
ized

im
plem

entations of

com
m

on functions

Device Extension Math Libraries
Maximum Flexibility of CUDA with Library Productivity

• CUDA kernels require handling CUDA memory and

thread hierarchy

• Device Extension APIs provide configurable building

blocks, with no call overhead for use in user CUDA

kernel

• C++ and Python support

• Currently available:

• cuFFTDx

• cuBLASDx

• cuSOLVERDx

• cuRANDDx

• nvCOMPDx

CUDA Kernel

Global
Memory Shared

Memory

Load

Store

Dx:GEMM

User Code

Dx:FFT

User Code

User Code

User Code:

Custom Ops for FFTs or

activations for GEMM

nvmath-python
Reimagining math libraries for the Python ecosystem

nvmath-python

Core math
operations

Intuitive
host APIs

Host APIs
with device
callbacks

Device APIs

Python JIT machinery

NVIDIA CUDA Math Libraries NVIDIA Performance Libraries for Grace CPU

BLAS FFT TENSOR SPARSE ScaLAPACK

Intel MKL for x86

BLAS FFT Sparse BLAS ScaLAPACK

Peak GPU performance from native math libraries Consistent CPU experience and productivity

User Application

nvmath-python low-level Python bindings

Interoperability with
core tensor libraries

FP64

FP32

FP16

BF16

FP8

MXFP8

TF32Rich FP compute &
storage types support

for AI and scientific
applications

@wp.kernel
def custom_kernel(signal: wp.array2d(dtype=wp.vec2d)):
 …
 # Forward FFT (inplace) on the tile.
 wp.tile_fft(signal_tile)
 …

NVIDIA Warp

cuda.program cuda.linkercuda.core

NVRTC nvJITLink

Powerful JIT compiler stack

Pythonic programming models for custom kernel writers

@cuda.jit(link=FFT.files)
def custom_kernel(signal : cp.array):
 …
 # Forward FFT (inplace).
 FFT(signal_rmem, shared_mem)
 …

numba-cuda

import torch
import nvmath

a = torch.rand(m, k)
b = torch.rand(k, n)

result = nvmath.linalg.advanced.matmul(a, b)

Stateless API Stateful API

Stateless APIs for convenience, stateful for peak performance

import torch
import nvmath

a = torch.rand(m, k)
b = torch.rand(k, n)

with nvmath.linalg.advanced.Matmul(a, b) as mm:
 mm.plan()
 result = mm.execute()

Floating-Point Emulation Using nvmath-python and Numba
GEMM emulation using INT8 tensor-core IMMA accessible through nvmath-python

nvmath-python

numba-cuda
SIMT

Host APIs
Host APIs

with device
callbacks

Device APIs

Thanks to NVIDIA MathDx, developers can
easily write high-performance numerical

kernels in C++. Now nvmath-python brings
the MathDx goodness to Python so that
users can write high-performance kernels

using numba-cuda

https://arxiv.org/pdf/2306.11975

https://arxiv.org/pdf/2306.11975

https://arxiv.org/pdf/2306.11975

Floating-Point Emulation Using nvmath-python and Numba
GEMM emulation using INT8 tensor-core IMMA accessible through nvmath-python

nvmath-python

Host APIs
Host APIs

with device
callbacks

C++ Python

LOC

3K
0.5K

numba-cuda
SIMT

Device APIs

Thanks to NVIDIA MathDx, developers can
easily write high-performance numerical

kernels in C++ . Now nvmath-python brings
the MathDx goodness to Python so that
users can write high-performance kernels

using numba-cuda

https://arxiv.org/pdf/2306.11975

Floating-Point Emulation Using nvmath-python and Numba
GEMM emulation performance* using INT8 tensor-core IMMA accessible through nvmath-python

(*) Preliminary data, subject to change.
(**) cuBLAS DGEMM w/ Emulation not yet released

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/MathDx/cuBLASDx/16_dgemm_emulation

https://github.com/NVIDIA/nvmath-python/blob/main/examples/device/cublasdx_fp64_emulation.py

C++ Python

m=n=k=8192 problem size for Cmn=AmkBkn

C++ Python

Dx Samples

3K
0.5K

vs.

** **

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/MathDx/cuBLASDx/16_dgemm_emulation
https://github.com/NVIDIA/nvmath-python/blob/main/examples/device/cublasdx_fp64_emulation.py
https://github.com/NVIDIA/nvmath-python/blob/main/examples/device/cublasdx_fp64_emulation.py
https://github.com/NVIDIA/nvmath-python/blob/main/examples/device/cublasdx_fp64_emulation.py

FP64 Matrix Multiplication Emulation in cuBLAS

GB200 Emulated FP64 GEMM Performance [TFLOPS]

Blackwell RTX Pro 6000 SE Emulated FP64 GEMM Performance [TFLOPS]
55 Mantissa Bits Used For Emulation (s=7)

Performance Impact of Emulation in cuSOLVER
QR Factorization Study

cuSOLVERMp Weak-Scaling Study on DGX B200 vs H200 ClustercuSOLVER Single GPU Speed-ups for both RTX PRO 6000
Blackwell Server Edition and B200

All data points shown pass cuSOLVER accuracy tests 55 bits used for emulation

Potential Additional Efficiency Gains
Performance of Emulated GEMM on B200 GPUs for various number of bits used

Default Gains
for Most

Applications

Optional
Additional

Gains

Quantum Espresso Performance with
FP Emulation (Ozaki-I)
AuSurf Benchmark on RTX 6000 Pro Blackwell SE (Low native FP64 throughput)

No data points for relative error
indicate no difference in results

Automatically Determining Emulation Parameters:
Exponent Span Capacity (ESC) Algorithm

ESC (Exponent Span Capacity)
Number of (Additional) Bits Required in the Intermediate Representation to Maintain Desired Precision

• What is the ESC?
• Recall that the fixed-point representation has no dynamic exponent
• To represent values with different exponents, fixed-precision emulation, we:

• Shift mantissa bits left (greater exponent) or shift mantissa bits right (lesser exponent)
• ESC is the number of extra bits needed in the intermediate (fixed-point) representation to hold mantissa values

• Matrix multiplication is equivalent to a set of independent dot products

• Every dot product has a bit-shift requirement (ESC)

• The bit-shift requirement for matrix multiplication is the maximum of the constituent dot product bit-shift
requirements

ESC (Exponent Span Capacity)
Number of (Additional) Bits Required in the Intermediate Representation to Maintain Desired Precision

• Consider a Single Dot Product
• 𝑠	 = 𝑥⃗	×	𝑦⃗

• View this Dot Product in terms of a Two Step
Process, Consistent with the Underlying
Mathematics

• 𝑧 	= 	 𝑥⃗ 	⊙	 𝑦⃗ : Hadamard Product (𝑧! 	 = 𝑥⃗!𝑦⃗!	∀	𝑖, 1: 𝑛)
• 𝑠 = 	∑!"#$ 𝑧!	 : Reduce

• There are 3 Special (Not Necessarily Unique)
Values to Consider

• (1) The maximum exponent in 𝑥⃗ ∶ (𝑀𝑎𝑥(𝐸𝑥𝑝 𝑥⃗))
• (2) The maximum exponent in y ∶ (𝑀𝑎𝑥(𝐸𝑥𝑝 𝑦⃗))
• (3) The maximum exponent in z⃗ ∶ (𝑀𝑎𝑥(𝐸𝑥𝑝 𝑧))

• The ESC is Defined as:

• (𝑀𝑎𝑥 𝐸𝑥𝑝 𝑥⃗ + 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑦⃗)) - 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑧)

• What Does This Definition Provide?
• The largest contribution(s) to the dot product

are captured in full-fidelity
• Requested number of mantissa bits in
𝑥⃗!	𝑎𝑛𝑑	𝑦⃗!	that contribute to 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑧) are
extracted from their FP representation and
used

• Regardless of “skew” (assumes maximal skew)
• i.e. the contributions to 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑧) are

implicitly assumed to be as asymmetric as they
possibly could be

• e.g., Assume that 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑥⃗) 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑦⃗) are
both 100, ESC is 80, and 𝑀𝑎𝑥(𝐸𝑥𝑝 𝑧) is 120

• This approach assumes that the
elements,	𝑥⃗!	𝑎𝑛𝑑	𝑦⃗! , that contribute to
𝑀𝑎𝑥(𝐸𝑥𝑝 𝑧) could have an exponent of 20 (safe)

• As opposed to assuming that both contributing
exponents are 60 (unsafe) (i.e. 100/20 vs. 60/60)

FP64-like Accuracy and Potential Performance Boost
Implementing guardrails for seamless acceleration

Analyze Inputs (ESC and Inf/NaN
detection)

Fall back to FP64 / Dispatch Emulation

FP64 GEMM

Slice A and B

Emulated GEMM

Histogram showing distribution of the number of bits
required as revealed by automatic input data analysis of

500 sparse matrices from SuiteSparse dataset

ESC (Exponent Span Capacity) calculates the number of extra mantissa bits required to accurately calculate the matrix multiplication result

55 63 71 >71

Automatic Tunning of Emulation for Accuracy
Library Selects the Number of Bits Automatically Based on Input Data with 10% overhead

47 55 63

=
/0

𝑸
𝑹
!

/
!

GB200 Emulated FP64 GEMM Speed-up vs Native FP64
With ESC (Automatic Precision Tuning) forced to 55 mantissa bits

For cases when
emulation is faster,
the geomean of the
ESC overhead is
10.5%

Grading the cuBLAS DGEMM Implementation

Demonstration of Safety Using FP64 Emulation
How can we ensure the results are always correct? What are the limits of cases emulation can handle?

• Numerical linear algebra experts have developed tests that can detect “emulation” or push them beyond practical
limits

• “How to grade the accuracy of an implementation of the BLAS,” by Jim Demmel, Xiaoye Li, Julien Langou, Weslley Pereira,
Mark Gates, and Cindy Rubio Gonzalez

• https://www.cs.utexas.edu/~flame/BLISRetreat2024/slides/Grading_BLAS.pdf

• There are three tests (screens)
• Strassen’s
• Fixed-Point Strassen’s
• Fixed-Point Emulation

• We implemented the not gameable versions (supersedes gameable)
• We will make the testing source code available (in Q3’25)

• We are testing our libraries against these tests:
• When emulation is turned on with no additional options:

• The library automatically calculates the number of extra mantissa bits required and falls back to native FP64 to deliver the correct
result

• When emulation is turned on and forced to use a fixed number of mantissa bits by the user
• The library will honor the user’s request and it will fail the fixed-point emulation test

https://www.cs.utexas.edu/~flame/BLISRetreat2024/slides/Grading_BLAS.pdf
https://www.cs.utexas.edu/~flame/BLISRetreat2024/slides/Grading_BLAS.pdf

Grading Test for Emulation Detection
Push Emulation to Its Limits to Test ESC

• Generate vector, x, using uniform random distribution with all elements in [1, 2)
• A Diagonal Matrix D is used to scale:
• y ß x · D and z ß x · D-1

• Columns of A and rows of B matrices are circularly shifted ”copies” of y and z, respectively
• We progressively increase the max. value of D from 20 to the 2512 limit to make the problem harder

Diagonal
Exponent
(base 2) Diagonal

A Matrix

B Matrix

x · D

x ·D-1

Grading Test for Emulation Detection
Push Emulation to Its Limits to Test ESC

𝑀𝑎𝑥. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐸𝑟𝑟𝑜𝑟 = 	max
",$

𝐶 − 𝐶%&'
𝐶%&'

• We progressively increase the max. value of
D from 20 to the 2512 limit to make the
problem harder

• Reference matrix was calculated using long
double

• Calculate the error as:

Emulation with ESC=OFF

• We progressively increase the max. value of
D from 20 to the 2512 limit to make the
problem harder

• Reference matrix was calculated using long
double

• Calculate the error as:

• With ESC the library maintains accuracy
throughout the increasing difficulty of the
problem, switching automatically from the
emulation scheme to native FP64

Grading Test for Emulation Detection
Push Emulation to Its Limits to Test ESC

𝑀𝑎𝑥. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐸𝑟𝑟𝑜𝑟 = 	max
",$

𝐶 − 𝐶%&'
𝐶%&'

Emulation with ESC=ON

Closing Remarks & Future Work

Closing Remarks & Future Work
Productization of Emulation for Matrix Multiplications

• Single precision (FP32) matrix multiplication emulation
using BF16x9 method is available now

• Double-precision (FP64) with Ozaki-I method will be
released second half of 2025

• Environment variables and programmatic APIs are available
to control emulation behavior

• Safeguards (e.g., ESC) are in place to fallback to native
HW-based kernels to guarantee results are always correct
and corner cases are handled

• cuBLASDx based implementation samples (without ESC)
are available on github in both C++ and Python

• Future releases will
• Add opt-in through other libraries that rely on matrix

multiplications
• Ozaki-II method will be added to is fundamentally different

and is able to handle more difficult cases with less additional
compute cost

• Continue to improve performance and reduce memory
requirements

• After enough exposure will switch to opt-out

